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Abstract— This paper proposes an object placement planner
for a grasped object during pick-and-place tasks. The proposed
planner automatically determines the pose of an object stably
placed near a user assigned point on an environment surface.
The proposed method first constructs a polygon model of
the surrounding environment, and then clusters the polygon
model of both the environment and the object where each
cluster is approximated by a planar region. The placement
of the object can be determined by selecting a pair of clusters
between the object and the environment. We further impose
several conditions to determine the pose of the object placed
on the environment. We show that we can determine the
position/orientation of the object placed on the environment
for several cases such as hanging a mug cup on a bar. The
effectiveness of the proposed research is confirmed through
several numerical examples.

I. INTRODUCTION

The pick-and-place is one of the most typical tasks for a
robot required to achieve. However, it is often difficult for a
robot to automatically plan the pick-and-place motion. One
reason for this difficulty is the complexity of the geometry
of both the environment and the grasped object. Fig. 1
shows a typical case of a robot’s working environment for
achieving a pick-and-place task. When a robot performs the
pick-and-place task in an environment where many daily
objects are randomly placed, the robot may place the object
in a narrow area surrounded by other objects or may on
top of other objects. Sometimes the robot may hang an
object on a bar. However, it is not clear how to determine
the position/orientation of an object stably placed on the
environment.

To deal with this problem, this research proposes an
autonomous object placement planner that determines the
stable position/orientation of an object placed on the envi-
ronment. Our planner first triangulates the captured point
cloud data of the environment. Then, it clusters the polygon
models of the object and the environment. Each cluster can
be approximated by a planar region. The object placement
planning is performed by selecting a pair of clusters where
one is from the object and the other is from the environment.
When selecting a pair of clusters, we consider the shape’s
convexity since the concave part of the object surface cannot
be in contact with the concave part of the environment
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Fig. 1.

Working environment to perform the pick-and-place task

surface. Then, we perform the inclusion test and the stability
test checking whether or not the object can be stably put on
the environment surface.

The authors have already proposed a grasp planner for
parallel grippers[1] where the posture of the hand stably
grasping the object is computed by considering the finger
surface elasticity. This method is effective since we can esti-
mate the contact area between the finger and the object and
can plan a grasping posture with a large contact area. Then,
by using this grasp planner, the authors have proposed a
pick-and-place planner for dual arm manipulators[2]. In this
research, the object placement planner was briefly outlined
as a part of the whole pick-and-place planner. Also, this
placement planner could just be applied for a limited case
of the environment shape. On the other hand, this research
extends and generalizes the object placement planner and
applies it to several examples.

This paper is organized as follows; after introducing the
related works in Section 2, Section 4 details the offline sur-
face clustering method. Then, Section 5 details the searching
method of the object pose. Finally, Section 6 demonstrates
the efficiency of our method through several numerical
examples.



II. RELATED WORKS

Lozano-Perez et al.[3] proposed the grasp and motion
planning problem. Then, during a decade, the grasp planning
problem has been extensively researched[4], [S], [6], [7],
[8], [9], [1]. As for the object placement planner in clut-
tered environment[10], [11], Berenson et al.[6] planned the
grasping posture of a multi-fingered hand taking the putting
posture into consideration. Here, the putting posture of the
object is assumed to be fixed. Recently, Cosgun et al.[12]
proposed the push planning on a table with many obstacles.
Schuster et al.[13] used the point cloud and identified a
a planar area on a table. On the other hand, our resaerch
deal with more general cases where the geometrical relation
between an object and an environment is considered.

There are several research on identifying a planar area
from the poinc cloud data such as[14], [15], [18]. Clustering
method of polygon models has been extensively researched
in the research community of computer graphics such as[16],
[17]. On the other hand, this research extends the clustering
method for object placement planning by robotic manipula-
tors.

III. NOMENCLATURE

We assume that the polygon model of the grasped object
is given. As for the surrounding environment of the robot,
we assume that the point cloud data is obtained and is trans-
formed into the polygon model. For each polygon model, we
define the following variables:

C; (¢ =1,---,n): i-th cluster of the polygon model as
a set of triangles.

P, (1=1,---,n): Plane fitted to C;.

n; (1 =1,---,n): 3D unit outer normal vector of P;.

p; (i =1,---,n): 3D position vector of a point on P;.
pgi (1 = 1,---,m): 3D position vector of the CoG
(center of gravity) of the point set included in C;.

IV. OFFLINE SURFACE CLUSTERING

This section describes the offline clustering method of the
polygon models of the object and the environment. We will
briefly explain the overview of the basic algorithm of the
clustering method since its detail has already described in
the previous papers[1], [2]. In the clustering algorithm, we
first calculate the initial set of clusters where each cluster is
composed of a few triangles. Then, we consider iteratively
merging a neighboring cluster as far as the cluster can be
approximated by a planar region. Fig. 2 shows the clustered
models of the grasped objects: pet-bottle, dog, mug-cup and
duck. Also, the clustered model of the environment is shown
in Fig. 1.

When searching the object posture, we consider that the
surface of the object maintains contact with the surface of the
environment. For this purpose, we consider selecting a pair of
clusters where one is from the object and the other is from the
environment. For the purpose of searching the object posture,
we calculate the following parameters for each cluster:

Clusters of the object models

Fig. 2.

Definition 1 Cluster Parameters
Fitted Plane: Normal vector n; of P; and the position

vector py; projected onto P; are calculated.

Boundary: Vertices included in more than two clusters
are defined as the boundary vertices. By using the
lines including the boundary vertices, we define the
boundary of clusters(Fig. 3). We define the outer
and the inner boundaries.

Contacting Cluster: The boolean parameter Contacting
Cluster is TRUE for the candidate cluster for
making contact.

Convexity: The parameter expressing the convexity;
CONVEX(CV), CONCAVE(CC) and NOTCLAS-
SIFIED(NC) is assigned for each cluster.

As for the Fitted Plane, we set the fitted plane of the object’s
cluster coinciding with the fitted plane of the environment’s
cluster when searching the object pose. As for Contacting
Cluster and Convexity, the details are explained in the
following subsections.

Outer boundary

Innter boundary

Fig. 3. Outer/inner boundaries of a cluster

A. Contacting Clusters

Since a large number of clusters are calculated especially
for complex shaped polygon models, it is not reasonable to
search all the clusters in real-time. Also, the user may want
to assign the point on the environment where the object is
placed. Hence, the boolean parameter Contacting Cluster
is associated for each cluster. If a cluster is a candidate for
making contact, the parameter Contacting Cluster is set to
be TRUE.



We now explain how to set this parameter in this paper.
For the polygon model the object, we manually click multiple
points on the object surface appeared in the graphics window.
The parameter Contacting Cluster of clusters including the
clicked point is set to be TRUE. For the polygon model of
the environment, we manually click a single point just before
searching for the object pose. The parameter Contacting
Cluster of a cluster including the clicked point is also set
to be TRUE. The robot performs the pick and place task so
that the grasped object is stably placed near the clicked point
on the environment.

B. Convexity

We calculate the convexity of each cluster. For the cluster
Ci, let Cy5 (j =1,---,m;) be the neighboring clusters. We
set the position vector p; and p;; so that the lines L;: p;+t;n;
and L;;: p;j +1t;;n;; have an intersection. At the intersection
point, we check the sign of the scalar values t; and ¢;;. Now
we have the following definition:

Definition 2 Convexity

CONVEX (CV) : If t; < 0 and ¢;; < 0 are satisfied
for all the neighboring clusters, the cluster C; is
defined to be CONVEX.

CONCAVE (CC) : If t; > 0 and ¢;; > 0 are satisfied
for all the neighboring clusters, the cluster C; is
defined to be CONCAVE.

NOTCLASSIFIED (NC) : If the sign of ¢; and #;; change
depending on the neighboring clusters, the cluster
C; is define to be NOTCLASSIFIED.

C. Table-Leg Clusters

When we calculate the convexity of clusters, special
attention should be paid for the objects having multiple legs
such as table, chair, human figure, and animal figure ( Fig.
4). These objects usually stand on the ground by the sole of
the foot. However, by simply clustering the polygon model,
each sole of the foot belongs to the different clusters. Now
we have the following definition:

Definition 3 Table-leg cluster
Table-leg cluster is a cluster composed of multiple
separated areas

To obtain the table-leg cluster, we calculate the following
equations for all the combination of two clusters of the
polygon model. For the clusters C; and C; we calculate

Lj = (pi—pj)- i,

my; = l—mn;-n; (G,j=1,---,n).

If the following three conditions are satisfied at the same

time, we consider merging C; to Cj:

1. l;; and m;; are smaller than the pre-defined threshold,

2. The parameter Convexity of the clusters C; and C; are
both CONVEX, and

3. Cj is not the neighboring cluster of C;.

Fig. 4. Clusters at the sole of the foot merged into a single cluster

V. OBJECT PLACEMENT SEARCH

This section explains the searching method of the object
pose. With our current setting, we search the object pose
online as a part of the pick-and-place motion planning. How-
ever, we can search the object pose offline as long as there
is no significant change in geometry of the environment.
Our object placement planner first obtains some pairs of
clusters. For the pairs of clusters, we check the convexity
of the clusters. Then, we check whether or not the cluster is
included in the outer boundary of its pair cluster projected on
the common fitted plane. We further check the static stability
of the object.

A. Convexity Test

When we consider that the surface of the object contacts
with the surface of the environment, we can classify the
contact states based on the combination of the cluster’s
convexity parameter as shown in Fig.5. We can assume 9
states; CV-CC, CV-CV, CC-CV, CC-CC, NC-CV, CV-NC,
NC-CC, CC-NC and NC-NC. By using this classification,
we can obtain a necessary condition for a pair of clusters
to maintain contact. For example, the contact cannot be
maintained if the state is CC-CC. This is because a concave
part of the object surface cannot maintain contact with a
concave part of the environment surface. Based on this
consideration, we can classify the contact states into the
Applicable and Not-applicable ones. We have the following
theorem:

Theorem 1 (Convexity Test)

For a pair of clusters to contact each other, the convexity

parameters have to be classified as Applicable shown

in the following cases:

Applicable: CV-CC, CV-CV, CC-CV, NC-CV, CV-NC,
and NC-NC

Not Applicable: CC-CC, NC-CC, and CC-NC

By using this classification, we can kick out three contact
states and can speed up the object placement planning.



(b) CONVEX-CONCAVE
(CV- CC)

(a) An example of object-environment contact with a

pair of matching clusters (c) CONVEX-CONVEX

(CV-CV)

(¢) CONCAVE-CONCAVE  (f) NOTCLASSIFIED-CONVEX
(cc-CcC) (NC-CV)

(d) CONCAVE-CONVEX
(Cc-cv)

() CONVEX-NOTCLASSIFIED (h) NOTCLASSIFIED-CONCAVE (i) CONCAVE-NOTCLASSIFIED
(CV-NC) (NC-CC) (CC-NC)

(j) NOTCLASSIFIED-NOTCLASSIFIED
(NC-NC)

Fig. 5. Classification of contact states between the object and the
environment based on the convexity parameter.

B. Cluster Inclusion Test

By using the pairs of clusters found out to be Applicable
in Theorem 1, we will obtain candidates of the object pose
contacting with the environment surface. For this purpose,
we perform the cluster inclusion test explained in this
subsection. The overview of the cluster inclusion test is
shown in Fig.6. Let us consider the case where a pair of
clusters shares a common fitted plane. Also, this subsection
considers the case where all the vertices of the cluster are
projected onto their fitted plane.

Although the pose of the object is arbitrary as far as
the object’s cluster shares a common fitted plane with the
environment’s cluster, this paper assumes eight poses of the
object. We first consider two cases of the relation between
the CoG of the object’s cluster (abbreviated as OCoG) and
the CoG of the environment’s cluster (abbreviated as ECoG).
In the first case, position of the OCoG coincides with the
position of the ECoG. And in the second case, the position
of the OCoG coincides with the user assigned point on the
environment surface. For these cases, we consider obtaining
candidates of the object pose by rotating the object about
the normal of the fitted plane for 0, 90, 180, and 270 [deg].
Fig.6 shows four of eight object poses.

Since Fig.6 shows an example of the CV-CC contact,
all the vertices of the object’s cluster should be included
inside the outer boundary of the environment’s cluster. If this
condition is not satisfied, the object cannot maintain contact

with the environment. On the other hand, if this condition
is satisfied, we express that CV C CC is satisfied. Now we
have the following theorem:

Theorem 2 (Cluster Inclusion Test)

For the contact states found out to be Applicable except
for CV-CV case, one of the conditions; CV C CC, CC
D CV, NC D CV, and CV C NC should be satisfied.

Among four object poses shown in Fig.6, CV C CC is
satisfied only for the case B.
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Fig. 6. Inclusion test for a pair of clusters where CV C CC is satisfied
for the case B

C. Stability Test

For the pose of the object satisfying Theorem 2, we check
whether or not the pose is statically stable. As in the previous
subsection, let us consider the case where a pair of clusters
shares a common fitted plane. Also, we consider the case
where all the vertices of the cluster are projected onto the
fitted plane.

Assuming that the friction between the object and the
environment is large enough, we check whether or not the
vertical line including the object’s CoG passes through the
supporting area. The overview of the algorithm is shown in
Fig. 7. This algorithm is summarized as follows:

Algorithm 1 (Stability Test)

Step 1: Set a pair of clusters sharing a common fitted
plane and project the inner/outer boundaries onto
the fitted plane.

Step 2: Obtain the common area included in the outer
boundaries.

Step 3: From the common area obtained in Step 2,
exclude the area included in the inner boundaries.

Step 4: For the area obtained in Step 3, calculate the
2D convex hull.

Step 5: If the vertical line including the object’s CoG
passes through the 2D convex hull, the contact is
stable.

If the condition of Step 4 is satisfied, we judge that the
pose of the object is statically stable under the gravitational
field. Here, before executing this algorithm, we check the
intersection between the vertical line including the CoG and



the fitted plane. If vertical position of the intersection is larger
than the CoG, we judge that the contact is stable and do not
execute Algorithm 1. This is because, even if the contact
is not stable by using Algorithm 1, we can expect that the
contact will converge to a stable state.
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Exclusion of inner boundary
Common area of outer boundary

\

=

Calculation of 2D convex hull

COG (Center of Gravity)
4—

Check the COG projection

Fig. 7. Stability checking algorithm

D. Integration to Pick-And-Place Planner

By using the proposed method, we prepare multiple can-
didates of object pose by applying the Theorem 2 and check
the static stability for each object pose by using Algorithm 1.
Hence, the proposed object placement planner may generate
multiple candidates of the object pose. In our setting, we set
the higher priority to the object pose where the CoG of the
object’s cluster coincides with the user assigned point on the
environment surface projected onto the fitted plane.

We execute the pick-and-place planner[2] for each object
pose. If we obtain the feasible pick-and-place motion, we
will terminate the planner. Here, we note that Theorem 1
and 2 just give necessary conditions for two clusters sharing
a common fitted plane. When performing the pick-and-place
planner, we check whether or not the object can really be
placed on the assigned part on the object surface by checking
the collision between the object and the environment.

VI. RESULTS

We confirm the effectiveness of the proposed approach
by numerical examples. We used the model of the dual-arm
manipulator HiroNX having 2DOF head, two 6DOF arms,
and 1DOF waist. As shown in Fig.1, we obtained the point
cloud data of the environment by using the Kinect sensor
and transformed it to the polygon model by using the Point
Cloud Library[18]. We coded the pick-and-place planner as
a plugin of Choreonoid [20].

We first measured the calculation time needed to trian-
gulate and clusterize. We used the PC with 3.2GHz CPU.

TABLE I
CALCULATION TIME NEEDED FOR TRIANGULATION AND

CLUSTERIZATION
Model Triangles | Triangulation [s] | Clusterization [s]
Mug cup 3450 0.2
Duck figure 13550 1.14
Dog figure 3220 0.18
Environment 65371 6.0 18.0

Table I shows the result of calculation where the name of the
model, the size of triangles, the time needed for triangulation
and clusterization. Here, the VRML model of the dog figure
was obtained from the Princeton Shape Benchmark[19]. With
the current setting, we wait for 24[s] to start the object
placement planner.

Then we show the calculation result of the pick-and-
place motion. Fig.8 shows the pick-and-place motion of the
dog figure. The red arrow shows the assigned point on the
environment. For the model of the object, the parameter
Contacting Cluster of the cluster at the foot sole is set to
be TRUE. This cluster is a typical example of the table-leg
cluster as is explained in this paper. It took about 0.5[s] to
calculate the pick-and-place motion. As shown in the figure,
the robot successfully performs the pick-and-place motion
and place the object at the assigned point on the environment
surface.

Fig.9 shows the pick-and-place motion of a mug cup.
Through this example, we consider hanging a handle of the
cup to a bar. In this example, since the vertical position of the
intersection between the gravity vector and the fitter plane is
larger than the object’s CoG, we did not check Algorithm 1.
Also, the parameter Contacting Cluster of the cluster inside
the handle part is set to be TRUE. As shown in the figure,
the robot successfully hangs the handle of the cup to the bar.

Fig. 8.

Pick-and-place motion of dog figure



Fig. 9.

Pick-and-place motion of mug cup

VII. DISCUSSION
A. Polygon Model of Environment

In this research, we construct the polygon model of the
environment and clustered it. By using the polygon model
of the environment, we can easily check the collision by
using standard collision checkers. On the other hand, the
triangulation of point cloud takes about 6[s]. Here, since
Point Cloud Library[18] prepares a basic method of plane
segmentation of point cloud, we can reduce the calculation
time by directly using the point cloud data in the object
placement planner. Also, we may not need to clusterize
whole surface of the environment model. Application of our
method to dynamically changing environment is a future
research topic. Furthermore, the difference between the real
environment and its polygon model should be taken into
consideration.

B. Inner and Outer Boundaries

For the polygon model of an object, it is easy to define the
outer and the inner boundaries of a cluster since the order of
vertices included in a triangle is uniform and there is no break
of polygons. However, for the case of the polygon model of
an environment, it sometimes becomes difficult to define the
outer and the inner boundaries of clusters. As for the polygon
model of the environment used in this research, instead of
using the outer boundary, we calculated the 2D convex hull
of points included in the cluster by using ghull[21]. Also,
we did not consider the inner boundaries of the clusters of
the environment model.

VIII. CONCLUSIONS

This paper proposed a method for object placement plan-
ning during the pick-and-place motion of robot manipulators.
In our method, we first cluster the polygon model of the
object and the environment. Then, candidates of object pose
placing near the assigned point on the environment surface

are obtained through several tests such as the convexity test,
the cluster inclusion test and the stability test. Through
numerical examples, we confirmed that the object can be
stably placed on the surface of the environment model

captured by using the Kinect sensor.

The authors would like express their sincere gratitude for
Mr. Michiharu Asahi with SFC Co. Ltd. for his help in
setting up the Kinect sensor and Dr. Juan Rojas for helpful
discussions. Lastly, this research was conducted under the
support of the NEDO intelligent robot technology software
project. Lastly, the source code of the pick-and-place planner
used in this research is available from [20].
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